Physicochemical Characterization, and Relaxometry Studies of Micro-Graphite Oxide, Graphene Nanoplatelets, and Nanoribbons
نویسندگان
چکیده
The chemistry of high-performance magnetic resonance imaging contrast agents remains an active area of research. In this work, we demonstrate that the potassium permanganate-based oxidative chemical procedures used to synthesize graphite oxide or graphene nanoparticles leads to the confinement (intercalation) of trace amounts of Mn(2+) ions between the graphene sheets, and that these manganese intercalated graphitic and graphene structures show disparate structural, chemical and magnetic properties, and high relaxivity (up to 2 order) and distinctly different nuclear magnetic resonance dispersion profiles compared to paramagnetic chelate compounds. The results taken together with other published reports on confinement of paramagnetic metal ions within single-walled carbon nanotubes (a rolled up graphene sheet) show that confinement (encapsulation or intercalation) of paramagnetic metal ions within graphene sheets, and not the size, shape or architecture of the graphitic carbon particles is the key determinant for increasing relaxivity, and thus, identifies nano confinement of paramagnetic ions as novel general strategy to develop paramagnetic metal-ion graphitic-carbon complexes as high relaxivity MRI contrast agents.
منابع مشابه
Graphene-based contrast agents for photoacoustic and thermoacoustic tomography☆
In this work, graphene nanoribbons and nanoplatelets were investigated as contrast agents for photoacoustic and thermoacoustic tomography (PAT and TAT). We show that oxidized single-and multi-walled graphene oxide nanoribbons (O-SWGNRs, O-MWGNRs) exhibit approximately 5-10 fold signal enhancement for PAT in comparison to blood at the wavelength of 755 nm, and approximately 10-28% signal enhance...
متن کاملGraphene oxide nanoribbons exhibit significantly greater toxicity than graphene oxide nanoplatelets.
Graphene oxide (GOs) has emerged in recent years as a versatile nanomaterial, demonstrating tremendous potential for multifunctional biomedical applications. GOs can be prepared by the top-down or bottom-up approach, which leads to a great variability of GOs being produced due to the different procedures and starting carbon sources adopted. This will have an effect on the physiochemical propert...
متن کاملGraphene oxide nanoribbons and their applications in supercapacitors
We report the enhanced capacitance of the Multi-Walled Carbon NanoTubes (MWCNTs) after a chemical unzipping process in concentrated sulfuric acid (H2SO4) and potassium permanganate (KMnO4). The effects of the test duration and temperature were investigated on the unzipping process of the MWCNTs to synthesize the graphene oxide nanoribbons. The SEM and TEM studies were carried out on untreated a...
متن کاملPreparation and Characterization of Reduced Graphene Nanosheets
In this work, the reduced graphene nanosheets were synthesized from pre-exfoliated graphite flakes. The pristine graphite flakes were firstly pre-exfoliated to graphite nanoplatelets in the presence of acetic acid. The obtained graphite nanoplatelets were treated by Hummer’s method to produce graphite oxide sheets and were finally exfoliated to graphene nanosheets by ultrasonication and reducti...
متن کاملSynthesis and characterization of Graphene Oxide in suspension and powder forms by chemical exfoliation method
In this study, an efficient and facile technique for preparing graphene oxide in suspension and powder forms was presented based on a modification on Hummers' method followed by an additional ultrasonic process. The method involved the provision of graphene oxide from graphite by reaction of potassium permanganate and sulfuric acid with stabilizing the medium complex. Furthermore, this study ev...
متن کامل